Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.105
Filtrar
1.
J Neuroinflammation ; 21(1): 125, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730470

RESUMO

BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos Transgênicos , Monócitos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Monócitos/metabolismo , Camundongos , Humanos , Peptídeos beta-Amiloides/metabolismo , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Idoso , Cistatinas/metabolismo , Cistatinas/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Idoso de 80 Anos ou mais , Camundongos Endogâmicos C57BL
2.
FASEB J ; 38(10): e23659, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38733301

RESUMO

HDAC3 inhibition has been shown to improve memory and reduce amyloid-ß (Aß) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 µM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aß42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 µM RGFP966, without changes in Aß. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Modelos Animais de Doenças , Histona Desacetilases , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Camundongos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos Transgênicos , Encéfalo/metabolismo , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fenilenodiaminas/farmacologia , Acrilamidas
3.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731398

RESUMO

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Assuntos
Trifosfato de Adenosina , Carbono , Ácido Cítrico , Mitocôndrias , Polietilenoimina , Proteínas Quinases , Polietilenoimina/química , Carbono/química , Trifosfato de Adenosina/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Pontos Quânticos/química , Animais , Peptídeos beta-Amiloides/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
4.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732223

RESUMO

Alzheimer's disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the APPswe/PS1ΔE9 (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aß deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aß deposits exhibit a more severe loss of afferents than the areas that are more distal to Aß deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aß deposits cause global as well as local toxicity to subcortical afferents.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Neurônios Colinérgicos , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide , Presenilina-1 , Animais , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Camundongos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo
5.
Sci Rep ; 14(1): 9970, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693203

RESUMO

Alzheimer's disease (AD) shows a high pathological and symptomatological heterogeneity. To study this heterogeneity, we have developed a patient stratification technique based on one of the most significant risk factors for the development of AD: genetics. We addressed this challenge by including network biology concepts, mapping genetic variants data into a brain-specific protein-protein interaction (PPI) network, and obtaining individualized PPI scores that we then used as input for a clustering technique. We then phenotyped each obtained cluster regarding genetics, sociodemographics, biomarkers, fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging, and neurocognitive assessments. We found three clusters defined mainly by genetic variants found in MAPT, APP, and APOE, considering known variants associated with AD and other neurodegenerative disease genetic architectures. Profiling of these clusters revealed minimal variation in AD symptoms and pathology, suggesting different biological mechanisms may activate the neurodegeneration and pathobiological patterns behind AD and result in similar clinical and pathological presentations, even a shared disease diagnosis. Lastly, our research highlighted MAPT, APP, and APOE as key genes where these genetic distinctions manifest, suggesting them as potential targets for personalized drug development strategies to address each AD subgroup individually.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Tomografia por Emissão de Pósitrons , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico por imagem , Humanos , Proteínas tau/genética , Apolipoproteínas E/genética , Masculino , Feminino , Idoso , Predisposição Genética para Doença , Precursor de Proteína beta-Amiloide/genética , Mapas de Interação de Proteínas/genética , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo
6.
Traffic ; 25(4): e12934, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613404

RESUMO

Alzheimer's disease (AD) pathology is characterized by amyloid beta (Aß) plaques and dysfunctional autophagy. Aß is generated by sequential proteolytic cleavage of amyloid precursor protein (APP), and the site of intracellular APP processing is highly debated, which may include autophagosomes. Here, we investigated the involvement of autophagy, including the role of ATG9 in APP intracellular trafficking and processing by applying the RUSH system, which allows studying the transport of fluorescently labeled mCherry-APP-EGFP in a systematic way, starting from the endoplasmic reticulum. HeLa cells, expressing the RUSH mCherry-APP-EGFP system, were investigated by live cell imaging, immunofluorescence, and Western blot. We found that mCherry-APP-EGFP passed through the Golgi faster in ATG9 knockout cells. Furthermore, ATG9 deletion shifted mCherry-APP-EGFP from early endosomes and lysosomes toward the plasma membrane concomitant with reduced endocytosis. Importantly, this alteration in mCherry-APP-EGFP transport resulted in increased secreted mCherry-soluble APP and C-terminal fragment-EGFP. These effects were also phenocopied by pharmacological inhibition of ULK1, indicating that autophagy is regulating the intracellular trafficking and processing of APP. These findings contribute to the understanding of the role of autophagy in APP metabolism and could potentially have implications for new therapeutic approaches for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Peptídeos beta-Amiloides , Células HeLa , Transporte Biológico , Autofagia
7.
Alzheimers Res Ther ; 16(1): 70, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575959

RESUMO

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. METHODS: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. CONCLUSIONS: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aß accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Idoso , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Catepsina D , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
8.
J Alzheimers Dis ; 98(4): 1243-1275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578892

RESUMO

The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-ß protein precursor [AßPP] cleavage product amyloid-ß [Aß]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AßPP cleavage product C99, not Aß, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo
9.
Sci Rep ; 14(1): 7975, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575686

RESUMO

Alzheimer's disease (AD) presents a significant challenge in neurodegenerative disease management, with limited therapeutic options available for its prevention and treatment. At the heart of AD pathogenesis is the amyloid-ß (Aß) protein precursor (APP), with the interaction between APP and the adaptor protein Mint2 being crucial. Despite previous explorations into the APP-Mint2 interaction, the dynamic regulatory mechanisms by which Mint2 modulates APP binding remain poorly understood. This study undertakes molecular dynamics simulations across four distinct systems-free Mint2, Mint2 bound to APP, a mutant form of Mint2, and the mutant form bound to APP-over an extensive 400 ns timeframe. Our findings reveal that the mutant Mint2 experiences significant secondary structural transformations, notably the formation of an α-helix in residues S55-K65 upon APP binding, within the 400 ns simulation period. Additionally, we observed a reduction in the active pocket size of the mutant Mint2 compared to its wild-type counterpart, enhancing its APP binding affinity. These insights hold promise for guiding the development of novel inhibitors targeting the Mints family, potentially paving the way for new therapeutic strategies in AD prevention and treatment.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Simulação de Dinâmica Molecular , Doença de Alzheimer/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ligação Proteica
10.
Sheng Li Xue Bao ; 76(2): 257-265, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658375

RESUMO

The present study aims to observe the change in expression of heat shock protein 90 (HSP90) along with amyloid-ß (Aß) and phosphorylated Tau (p-Tau) protein levels in the hippocampus tissue of Alzheimer's disease (AD) transgenic animal model with age. APP/PS1 transgenic mice at age of 6-, 9- and 12-month and C57BL/6J mice of the same age were used. The cognitive abilities of these animals were evaluated using a Morris water maze. Western blot or immunohistochemistry was used to detect the expressions of HSP90 and Aß1-42, as well as the phosphorylation levels of Tau protein in the hippocampus. The hsp90 mRNA levels and the morphology and number of cells in the hippocampus were detected with real-time quantitative polymerase chain reaction (qRT-PCR) and Nissl staining, respectively. The results showed that compared with C57BL/6J mice of the same age, HSP90 and hsp90 mRNA expression were decreased (P < 0.05 or P < 0.01), while Aß1-42 and p-Tau protein levels were increased (P < 0.05 or P < 0.01) in the hippocampal tissue of APP/PS1 transgenic mice. Meanwhile, the decrease in HSP90 and hsp90 mRNA expression (P < 0.05 or P < 0.01), the increase in Aß1-42 and p-Tau levels (P < 0.01 or P < 0.05) in hippocampal tissue and the reduction in behavioral ability showed a progressive development with the advancing of age in the APP/PS1 transgenic mice. In conclusion, in the hippocampal tissue of APP/PS1 mice, the decrease in HSP90 expression and the increase in Aß1-42 and p-Tau levels together with the decline of their cognitive ability are age-dependent.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Proteínas de Choque Térmico HSP90 , Hipocampo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas tau , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Hipocampo/metabolismo , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino , Modelos Animais de Doenças , Fosforilação , Fatores Etários , Envelhecimento/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/genética , Presenilina-1/genética , Presenilina-1/metabolismo
11.
Biomed Pharmacother ; 174: 116577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593704

RESUMO

INTRODUCTION: Total ginsenosides (TG), the major active constituents of ginseng, have been proven to be beneficial in treatment of Alzheimer's disease (AD). However, the underlying mechanism of TG remains unclear. METHODS: APP/PS1 mice and N2a/APP695 cells were used as in vivo and in vitro model, respectively. Morris water maze (MWM) was used to investigate behavioral changes of mice; neuronal pathological changes were assessed by hematoxylin and eosin (H&E) and nissl staining; immunofluorescence staining was used to examine amyloid beta (Aß) deposition; Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of relative amyloidogenic genes and proteins. Moreover, the antagonist of PPARγ, GW9662, was used to determine whether the effects of TG on Aß production were associated with PPARγ activity. RESULTS: TG treatment increased the spatial learning and memory abilities of APP/PS1 mice while decreasing the Aß accumulation in the cortex and hippocampus. In N2a/APP695 cells, TG treatment attenuated the secretion of Aß1-40 and Aß1-42 acting as an PPARγ agonist by inhibiting the translocation of NF-κB p65. Additionally, TG treatment also decreased the expression of amyloidogenic pathway related gene BACE1, PS1 and PS2. CONCLUSIONS: TG treatment reduced the production of Aß both in vivo and in vitro. Activating PPARγ might be a potential therapeutic target of TG in facilitating Aß clearance and ameliorating cognitive deficiency in APP/PS1 mice.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Ginsenosídeos , PPAR gama , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ginsenosídeos/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Presenilina-1/genética
12.
Acta Physiol (Oxf) ; 240(6): e14142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584589

RESUMO

AIM: Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS: We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS: Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS: The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.


Assuntos
Precursor de Proteína beta-Amiloide , Astrócitos , Gliose , Animais , Gliose/metabolismo , Gliose/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Células Cultivadas , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Camundongos Knockout
13.
Glia ; 72(7): 1340-1355, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38597386

RESUMO

Several in vivo studies have shown that systemic inflammation, mimicked by LPS, triggers an inflammatory response in the CNS, driven by microglia, characterized by an increase in inflammatory cytokines and associated sickness behavior. However, most studies induce relatively high systemic inflammation, not directly compared with the more common low-grade inflammatory events experienced in humans during the life course. Using mice, we investigated the effects of low-grade systemic inflammation during an otherwise healthy early life, and how this may precondition the onset and severity of Alzheimer's disease (AD)-like pathology. Our results indicate that low-grade systemic inflammation induces sub-threshold brain inflammation and promotes microglial proliferation driven by the CSF1R pathway, contrary to the effects caused by high systemic inflammation. In addition, repeated systemic challenges with low-grade LPS induce disease-associated microglia. Finally, using an inducible model of AD-like pathology (Line 102 mice), we observed that preconditioning with repeated doses of low-grade systemic inflammation, prior to APP induction, promotes a detrimental effect later in life, leading to an increase in Aß accumulation and disease-associated microglia. These results support the notion that episodic low-grade systemic inflammation has the potential to influence the onset and severity of age-related neurological disorders, such as AD.


Assuntos
Doença de Alzheimer , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia , Animais , Microglia/metabolismo , Microglia/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Modelos Animais de Doenças , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Masculino , Feminino , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo
14.
J Mol Neurosci ; 74(2): 49, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668787

RESUMO

The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Placa Amiloide/patologia
15.
Life Sci ; 345: 122606, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574884

RESUMO

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Assuntos
Doença de Alzheimer , Neuroblastoma , Animais , Humanos , Caenorhabditis elegans/metabolismo , Longevidade , Proteína GAP-43 , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais Geneticamente Modificados/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Crescimento Neuronal
16.
J Neurosci Res ; 102(3): e25295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515329

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aß) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from male APPswe/PS1dE9 (APP/PS1) mice and wild-type littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single-cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentially reflect the initial response of microglia to Aß.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Lactente , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Placa Amiloide , Presenilina-1/genética , Transcriptoma
17.
ACS Chem Neurosci ; 15(7): 1321-1334, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525994

RESUMO

Alzheimer's disease is the most common form of dementia encountered in an aging population. Characteristic amyloid deposits of Aß peptides in the brain are generated through cleavage of amyloid precursor protein (APP) by γ-secretase, an intramembrane protease. Cryo-EM structures of substrate γ-secretase complexes revealed details of the process, but how substrates are recognized and enter the catalytic site is still largely ignored. γ-Secretase cleaves a diverse range of substrate sequences without a common consensus sequence, but strikingly, single point mutations within the transmembrane domain (TMD) of specific substrates may greatly affect cleavage efficiencies. Previously, conformational flexibility was hypothesized to be the main criterion for substrate selection. Here we review the 3D structure and dynamics of several γ-secretase substrate TMDs and compare them with mutants shown to affect the cleavage efficiency. In addition, we present structural and dynamic data on ITGB1, a known nonsubstrate of γ-secretase. A comparison of biophysical details between these TMDs and changes generated by introducing crucial mutations allowed us to unravel common principles that differ between substrates and nonsubstrates. We identified three motifs in the investigated substrates: a highly flexible transmembrane domain, a destabilization of the cleavage region, and a basic signature at the end of the transmembrane helix. None of these appears to be exclusive. While conformational flexibility on its own may increase cleavage efficiency in well-known substrates like APP or Notch1, our data suggest that the three motifs seem to be rather variably combined to determine whether a transmembrane helix is efficiently recognized as a γ-secretase substrate.


Assuntos
Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteólise , Seleção de Pacientes , Precursor de Proteína beta-Amiloide/metabolismo , Domínios Proteicos
18.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542381

RESUMO

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. The accumulation of amyloid-beta (Aß) plaques is a distinctive pathological feature of AD patients. The aims of this study were to evaluate the therapeutic effect of chicoric acid (CA) on AD models and to explore its underlying mechanisms. APPswe/Ind SH-SY5Y cells and 5xFAD mice were treated with CA. Soluble Aß1-42 and Aß plaque levels were analyzed by ELISA and immunohistochemistry, respectively. Transcriptome sequencing was used to compare the changes in hippocampal gene expression profiles among the 5xFAD mouse groups. The specific gene expression levels were quantified by qRT-PCR and Western blot analysis. It was found that CA treatment reduced the Aß1-42 levels in the APPswe/Ind cells and 5xFAD mice. It also reduced the Aß plaque levels as well as the APP and BACE1 levels. Transcriptome analysis showed that CA affected the synaptic-plasticity-related genes in the 5xFAD mice. The levels of L1CAM, PSD-95 and synaptophysin were increased in the APPswe/Ind SH-SY5Y cells and 5xFAD mice treated with CA, which could be inhibited by administering siRNA-L1CAM to the CA-treated APPswe/Ind SH-SY5Y cells. In summary, CA reduced Aß levels and increased the expression levels of synaptic-function-related markers via L1CAM in AD models.


Assuntos
Doença de Alzheimer , Ácidos Cafeicos , Molécula L1 de Adesão de Célula Nervosa , Neuroblastoma , Doenças Neurodegenerativas , Succinatos , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Ácido Aspártico Endopeptidases/metabolismo , Peptídeos beta-Amiloides/metabolismo
19.
Eur J Pharmacol ; 970: 176485, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492878

RESUMO

Alzheimer's disease (AD) exhibits a higher incidence rate among older women, and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis during aging is associated with cognitive impairments and the development of dementia. luteinizing hormone (LH) has an important role in CNS function, such as mediating neuronal pregnenolone production, and modulating neuronal plasticity and cognition. The sex differences in LH and its impact on Aß deposition in AD individuals remain unclear, with no reported specific mechanisms. Here, we show through data mining that LH-related pathways are significantly enriched in female AD patients. Additionally, LH levels are elevated in female AD patients and exhibit a negative correlation with cognitive levels but a positive correlation with AD pathology levels, and females exhibit a greater extent of AD pathology, such as Aß deposition. In vivo, we observed that the exogenous injection of LH exacerbated behavioral impairments induced by Aß1-42 in mice. LH injection resulted in worsened neuronal damage and increased Aß deposition. In SH-SY5Y cells, co-administration of LH with Aß further exacerbated Aß-induced neuronal damage. Furthermore, LH can dose-dependently decrease the levels of NEP and LHR proteins while increasing the expression of GFAP and IBA1 in vivo and in vitro. Taken together, these results indicate that LH can exacerbate cognitive impairment and neuronal damage in mice by increasing Aß deposition. The potential mechanism may involve the reduction of NEP and LHR expression, along with the exacerbation of Aß-induced inflammation.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fragmentos de Peptídeos , Feminino , Humanos , Camundongos , Masculino , Animais , Idoso , Doença de Alzheimer/metabolismo , Hormônio Luteinizante , Caracteres Sexuais , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
20.
Eur J Pharmacol ; 970: 176491, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503399

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease with the hallmark of aggregation of beta-amyloid (Aß) into extracellular fibrillar deposition. Accumulating evidence suggests that soluble toxic Aß oligomers exert diverse roles in neuronal cell death, oxidative stress, neuroinflammation, and the eventual pathogenesis of AD. Aß is derived from the sequential cleavage of amyloid-ß precursor protein (APP) by ß-secretase (BACE1) and γ-secretase. The current effect of single targeting is not ideal for the treatment of AD. Therefore, developing multipotent agents with multiple properties, including anti-Aß generation and anti-Aß aggregation, is attracting more attention for AD treatment. Previous studies indicated that Quercetin was able to attenuate the effects of several pathogenetic factors in AD. Here, we showed that naturally synthesized Quercetin-3-O-glc-1-3-rham-1-6-glucoside (YCC31) could inhibit Aß production by reducing ß-secretase activity. Further investigations indicated that YCC31 could suppress toxic Aß oligomer formation by directly binding to Aß. Moreover, YCC31 could attenuate Aß-mediated neuronal death, ROS and NO production, and pro-inflammatory cytokines release. Taken together, YCC31 targeting multiple pathogenetic factors deserves further investigation for drug development of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Citocinas , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glucosídeos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA